## Guidance of the WMO Commission for Climatology on verification of operational seasonal forecasts

## Ernesto Rodríguez Camino AEMET

(Thanks to S. Mason, C. Coelho, C. Santos, E. Sanchez)

Forecasts possess no intrinsic value. They acquire value through their ability to influence the decisions made by users of the forecasts.

(Murphy 1993)

#### Guidance on Verification of Operational Seasonal Climate Forecasts

Simon J. Mason International Research Institute for Climate and Society

> Draft: 19 November 2008 Revision: 10 February 2009 Final revision: 13 August 2013

> Prepared under the auspices of

World Meteorological Organization, Commission for Climatology XIV Expert Team on CLIPS Operations, Verification, and Application Service

# Why verify operational seasonal forecasts?

- Does a new system improve the current one?
- Is the cost of the forecast justified?
- Is it a good idea to use (or pay for) the forecast?
- If so, how can they best used?

All operational forecast should be accompanied by readily available information on the quality of forecast (minimum set of diagnostics)

## Example: ECMWF



#### Unfortunately, this is not the case for most RCOFs!

## Motivation

- There is quite a lot of experience veryfing probabilistic outputs of seasonal models.
- Complement the Standardized Verification System for LRFs (SVSLRF) for GPC products.



## Example verification seasonal forecasts from GCMs: RPSS

## Motivation

- There is quite a lot of experience veryfing probabilistic outputs of seasonal models.
- Complement the Standardized Verification System for LRFs (SVSLRF) for GPC products.
- So far most RCOFs are limited their verification to qualitative procedures → need move towards use of objective scores!!
- There are no formal WMO verification procedures, but some guidance on procedures is being published by WMO CCI
- Focus on how well forecasts correspond with observations (quality), and also on attributes making forecasts potentially useful (value).
- Small sample sizes (few years, few stations) typical of seasonal forecasts → large sampling errors

## What is a good forecast? (Murphy 1993)

### 3 types of goodness:

- CONSISTENCY → true indication of what the forecaster thinks is going to happen
- QUALITY → how well what was forecast corresponds with what happened
- VALUE/UTILITY → "value" economic, or social, or otherwise.

## Probabilistic forecasts and forecast quality

- A forecaster says there is a 100% chance of rain tomorrow → It rains → Very good forecast!
- A forecaster says there is a 80% chance of rain tomorrow  $\rightarrow$  It rains  $\rightarrow$  ?
- A forecaster says there is a 50% chance of rain tomorrow  $\rightarrow$  It rains  $\rightarrow$ ?
- A forecaster says there is a 10% chance of rain tomorrow  $\rightarrow$  It rains  $\rightarrow$  ?

### How good are the different forecast?

## How good are the different forecast?

- One reasonably common practice is to define probabilistic forecasts as "correct" if the category with the highest probability verified.
- Most RCOFs verify qualitatively in this way
- Forecasters typically become tempted to hedge towards issuing higher probabilities on the normal category to avoid a two category "error" → Scoring strategy is an issue!!

## Verification procedures suitable for the forecasts in the format in which they are presented.

 If forecasts are delivered in form of tercilebased categories → Verification should fit to it!

## Attributes of "good" probabilistic forecasts

(Murphy 1993)

#### Resolution

Does the outcome change when the forecast changes? OUTCOME CONDITIONED BY FORECAST Example: does above-normal rainfall become more frequent when its probability increases?

#### • Discrimination

Does the forecast differ when the outcome differs? FORECAST CONDITIONED BY OUTCOME Example: is the probability on above-normal rainfall higher when above-normal rainfall occurs?

#### • Reliability

if observation falls in the category as FREQUENTLY as the forecast implies

#### Sharpness

Probabilities differing MARKEDLY from the climatology

• Skill

It COMPARES two forecasts with some metric

## From EUMETCAL( http://www.eumetcal.org)

|                                                                                                                                                                                                                                     | High reliability | High resolution | High Sharpness | Discriminatory | High Skill |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|----------------|----------------|------------|
| The forecaster predicts the<br>long term climatological<br>frequency on each occasion                                                                                                                                               | <b>√</b>         | X               | X              | X              | X          |
| The forecaster predicts<br>categorically, that is, he<br>assigns a forecast of 100%<br>to the category he thinks is<br>most likely, and 0 to the<br>other.                                                                          | X                | X               |                | X              | X          |
| The forecaster manages to<br>forecast 45% probability<br>when the event does not<br>occur and 55% when it does.                                                                                                                     | X                | $\checkmark$    | X              | $\checkmark$   | X          |
| A forecaster who is sure, but<br>never absolutely certain,<br>forecasting 80% when he<br>thinks rain will occur and<br>20% when he thinks it<br>won't.                                                                              | X                | X               |                | X              | X          |
| The forecaster sits back with<br>a smile on his face: He went<br>out on a limb and predicted<br>90% probability of rain in his<br>dry climate where it<br>normally rains on only 10%<br>of the days. And sure<br>enough, it rained. | X                | X               | X              | X              | <b>√</b>   |

#### Recommended scores/procedures for series of forecasts

| Score or<br>procedure              | Attributes                                      | By<br>category? | By<br>location? | Part of<br>SVSLRF? | References                               |
|------------------------------------|-------------------------------------------------|-----------------|-----------------|--------------------|------------------------------------------|
| Generalized<br>discrimination<br>* | Discrimination,<br>skill                        | No              | Yes             | No                 | Mason and<br>Weigel (2009)               |
| ROC graph *                        | Discrimination,<br>skill                        | Yes             | Yes             | Yes                | Mason (1982);<br>Harvey et al.<br>(1992) |
| ROC area *                         | Discrimination,<br>skill                        | Yes             | Yes             | Yes                | Hogan and<br>Mason (2012)                |
| Resolution<br>score                | Resolution                                      | Yes             | No              | No                 | Murphy<br>(1973)                         |
| Reliability<br>score               | Reliability                                     | Yes             | No              | No                 | Murphy<br>(1973)                         |
| Effective<br>interest rate *       | Accuracy, skill                                 | No              | Yes             | No                 | Hagedorn and<br>Smith (2008)             |
| Accumulated profit graphs          | Accuracy, skill                                 | No              | Yes             | No                 | Hagedorn and<br>Smith (2008)             |
| Reliability<br>diagrams *          | Reliability,<br>resolution,<br>sharpness, skill | Yes and no      | No              | Yes                | Hsu and<br>Murphy<br>(1986)              |
| Tendency<br>diagrams               | Unconditional<br>bias                           | Yes             | Yes and no      | No                 | Mason (2012)                             |
| Slope of<br>reliability curve      | Resolution,<br>conditional bias                 | Yes and no      | No              | No                 | Wilks and<br>Murphy<br>(1998)            |

(\*) Minimum set for an operational centre

## ROC curves: idealized examples



## Simple realistic example



| Veer Event n |                  |       | Thresholds |      |      |      |      |      |      |      |
|--------------|------------------|-------|------------|------|------|------|------|------|------|------|
|              | rear             | Event | P          | 0.45 | 0.40 | 0.35 | 0.33 | 0.30 | 0.25 | 0.20 |
| Ι            | 2001             | No    | 0.20       | 0    | 0    | 0    | 0    | 0    | 0    | 1    |
| Ι            | 2002             | No    | 0.20       | 0    | 0    | 0    | 0    | 0    | 0    | 1    |
| Ι            | 2003             | No    | 0.25       | 0    | 0    | 0    | 0    | 0    | 1    | 1    |
|              | 2004             | No    | 0.33       | 0    | 0    | 0    | 1    | 1    | 1    | 1    |
| Ι            | 2005             | No    | 0.40       | 0    | 1    | 1    | 1    | 1    | 1    | 1    |
| Ι            | 2006             | No    | 0.45       | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| I            | False-alarm rate |       | 0.17       | 0.33 | 0.33 | 0.50 | 0.50 | 0.67 | 1.00 |      |
| I            | 2007             | Yes   | 0.45       | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
|              | 2008             | Yes   | 0.35       | 0    | 0    | 1    | 1    | 1    | 1    | 1    |
| 1            |                  |       | Hit rate   | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Table B.5a. Example calculation of the hit and false-alarm rates for the ROC graph.

## Reliability diagrams: observed relative freq. vs forecasted relative freq.



Reliability diagrams for the first 10 years of PRESAO (seasonal rainfall forecasts Jul-Sept)

![](_page_18_Figure_1.jpeg)

## Verification with CPT

| Climate Predictability Tool 13 - Probab                                    | ilistic Forecast Verifi | cation                       |                  |                       |                 |
|----------------------------------------------------------------------------|-------------------------|------------------------------|------------------|-----------------------|-----------------|
| <u>File Edit Actions Tools Options</u>                                     | ⊻iew <u>H</u> elp       |                              |                  |                       |                 |
|                                                                            |                         | Input File:                  | s                |                       |                 |
| Explanatory (X) Vari                                                       | ables: ———              | Response (Y) Var             | iables: ———      | Forecast Var          | iables: ———     |
| browse                                                                     |                         | browse                       |                  | browse                | e fil           |
| File name: GHACOF_SOND_Fo                                                  | recasts.txt             | File name: GHACOF_SOND_      | observations.txt | File name: GHACOF_SON | D_Forecasts.txt |
| First data: SOND 1998                                                      |                         | First data: SOND 1961        |                  | First data: SOND 1998 |                 |
| Last data: SOND 2007                                                       |                         | Last data: SOND 2012         |                  | Last data: SOND 2007  |                 |
| Start at: 1998 ≑                                                           |                         | Start at: 1998 ≑             |                  | Start at: 2007 ≑      |                 |
| Number of fields                                                           | 1                       | Number of fields             | 1                | Number of fields      | 1               |
| Number of lags                                                             | 1                       | Number of lags               | 1                | Number of lags        | 1               |
| Number of stations                                                         | 10                      | Number of stations           | 10               | Number of stations    | 10              |
| Number used                                                                | 10                      | Number used                  | 10               | Number used           | 0               |
|                                                                            |                         |                              |                  |                       |                 |
|                                                                            |                         | Training da                  | ta               |                       |                 |
| Length of training period                                                  | : 10 ≑                  | Length of cross-validation v | vindow: 5        | Number of forecas     | ts: 1 ≑         |
| Actions:                                                                   |                         |                              |                  |                       |                 |
| ity Tool 13                                                                | _ D X                   | <b>_</b> ]                   |                  |                       |                 |
| Help                                                                       |                         | -                            |                  |                       |                 |
|                                                                            |                         |                              |                  |                       |                 |
|                                                                            |                         |                              |                  |                       |                 |
| IMATE DEDICTABI                                                            |                         |                              |                  |                       |                 |
|                                                                            |                         |                              |                  |                       | et.             |
| TOOL                                                                       |                         |                              |                  |                       |                 |
| ICOL                                                                       |                         |                              | )                |                       |                 |
| The backing a second all strends are distant.                              |                         | RO 📴 🗉 🖾 🖭 Attr 🗇            |                  |                       |                 |
| Evaluating seasonal climate predictab                                      | liity                   |                              |                  |                       |                 |
| Designed for MOS applications                                              |                         |                              |                  |                       |                 |
|                                                                            |                         |                              |                  |                       |                 |
| Copyright 2002-2013 International Research Institute for Climate and Socie | ty                      |                              |                  |                       |                 |
|                                                                            |                         |                              |                  |                       |                 |
| The International Research Institute                                       |                         |                              |                  |                       |                 |
| or Climate and Society                                                     |                         |                              |                  |                       |                 |
|                                                                            |                         |                              |                  |                       |                 |
|                                                                            |                         |                              |                  |                       |                 |

Climate Predictabi

C

(IRI

Verification of tercile-based forecasts only requires information of the obs. category  $\rightarrow$  problems related data policy circumvected

| Year | Observation | Below | Normal | Above |
|------|-------------|-------|--------|-------|
| 2001 | В           | 0.45  | 0.35   | 0.20  |
| 2002 | В           | 0.50  | 0.30   | 0.20  |
| 2003 | В           | 0.35  | 0.40   | 0.25  |
| 2004 | В           | 0.33  | 0.33   | 0.33  |
| 2005 | N           | 0.25  | 0.35   | 0.40  |
| 2006 | N           | 0.20  | 0.35   | 0.45  |
| 2007 | A           | 0.20  | 0.35   | 0.45  |
| 2008 | Α           | 0.25  | 0.40   | 0.35  |

## Scores to verify the consensus forecasts

and

## scores to improve the consensus process

## Reference climatology is relevant!

- Paco's tranparency!!
- Tercile-based seasonal forecasts referred to a climatology
- Climatologist  $\rightarrow$  long reference periods (30 y)
- Users  $\rightarrow$  short (10 y) recient periods

## Recommendations

- Assess the degree to which forecasts are being hedged on normal → Eliminate, or at least reduce, the hedging:
  - Use "proper" scoring procedures
  - Review procedures for setting probabilities
- Agree upon a minimum set of verification procedures for RCOF products.
- Encourage greater standardization in forecast production

## Proposal

- Start with a minimum verification package (following WMO-CCI guidelines) verifying consensus forecast (tercile-based) produced so far by SEECOF and PRESANORD
- Use initially ECA&D data from a set of selected stations and tercile-based obs. (A, N, B)
- Agree on a reference period to establish our tercile values
- Report on MedCOF-2

## THANK YOU FOR YOUR ATTENTION!

and

## discussion on RCOF verification to be continued!!!

## Discrimination

#### Perfect

| 2003 | 70% | Т |
|------|-----|---|
| 2004 | 60% | Т |
| 2005 | 30% | F |
| 2006 | 40% | Т |
| 2007 | 20% | F |
| 2008 | 10% | F |
| 2009 | 35% | Т |
| 2010 | 50% | Т |
| 2011 | 25% | F |
| 2012 | 10% | F |

If prob>35% always T

#### Very bad

| 2003 | 70% | F |
|------|-----|---|
| 2004 | 60% | Т |
| 2005 | 30% | Т |
| 2006 | 40% | Т |
| 2007 | 20% | F |
| 2008 | 10% | Т |
| 2009 | 35% | Т |
| 2010 | 50% | F |
| 2011 | 25% | F |
| 2012 | 10% | Т |